3.684 \(\int \frac{\sqrt{c+d x^2}}{x^4 \left (a+b x^2\right )} \, dx\)

Optimal. Leaf size=105 \[ \frac{b \sqrt{b c-a d} \tan ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{a^{5/2}}+\frac{\sqrt{c+d x^2} (3 b c-a d)}{3 a^2 c x}-\frac{\sqrt{c+d x^2}}{3 a x^3} \]

[Out]

-Sqrt[c + d*x^2]/(3*a*x^3) + ((3*b*c - a*d)*Sqrt[c + d*x^2])/(3*a^2*c*x) + (b*Sq
rt[b*c - a*d]*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/a^(5/2)

_______________________________________________________________________________________

Rubi [A]  time = 0.352539, antiderivative size = 105, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208 \[ \frac{b \sqrt{b c-a d} \tan ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{a^{5/2}}+\frac{\sqrt{c+d x^2} (3 b c-a d)}{3 a^2 c x}-\frac{\sqrt{c+d x^2}}{3 a x^3} \]

Antiderivative was successfully verified.

[In]  Int[Sqrt[c + d*x^2]/(x^4*(a + b*x^2)),x]

[Out]

-Sqrt[c + d*x^2]/(3*a*x^3) + ((3*b*c - a*d)*Sqrt[c + d*x^2])/(3*a^2*c*x) + (b*Sq
rt[b*c - a*d]*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/a^(5/2)

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 54.96, size = 90, normalized size = 0.86 \[ - \frac{\sqrt{c + d x^{2}}}{3 a x^{3}} - \frac{\sqrt{c + d x^{2}} \left (a d - 3 b c\right )}{3 a^{2} c x} - \frac{b \sqrt{a d - b c} \operatorname{atanh}{\left (\frac{x \sqrt{a d - b c}}{\sqrt{a} \sqrt{c + d x^{2}}} \right )}}{a^{\frac{5}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((d*x**2+c)**(1/2)/x**4/(b*x**2+a),x)

[Out]

-sqrt(c + d*x**2)/(3*a*x**3) - sqrt(c + d*x**2)*(a*d - 3*b*c)/(3*a**2*c*x) - b*s
qrt(a*d - b*c)*atanh(x*sqrt(a*d - b*c)/(sqrt(a)*sqrt(c + d*x**2)))/a**(5/2)

_______________________________________________________________________________________

Mathematica [A]  time = 0.195097, size = 93, normalized size = 0.89 \[ \frac{b \sqrt{b c-a d} \tan ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{a^{5/2}}+\frac{\sqrt{c+d x^2} \left (3 b c x^2-a \left (c+d x^2\right )\right )}{3 a^2 c x^3} \]

Antiderivative was successfully verified.

[In]  Integrate[Sqrt[c + d*x^2]/(x^4*(a + b*x^2)),x]

[Out]

(Sqrt[c + d*x^2]*(3*b*c*x^2 - a*(c + d*x^2)))/(3*a^2*c*x^3) + (b*Sqrt[b*c - a*d]
*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/a^(5/2)

_______________________________________________________________________________________

Maple [B]  time = 0.021, size = 1059, normalized size = 10.1 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((d*x^2+c)^(1/2)/x^4/(b*x^2+a),x)

[Out]

-1/3/a/c/x^3*(d*x^2+c)^(3/2)+b/a^2/c/x*(d*x^2+c)^(3/2)-b/a^2*d/c*x*(d*x^2+c)^(1/
2)-b/a^2*d^(1/2)*ln(x*d^(1/2)+(d*x^2+c)^(1/2))+1/2*b^2/a^2/(-a*b)^(1/2)*((x-1/b*
(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)+1/2
*b/a^2*d^(1/2)*ln((d*(-a*b)^(1/2)/b+(x-1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x-1/b*(-a*
b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))+1/2*b/
a/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b
*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)
/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x-1/b*(-a*b)^(1/2)))*d-1/2*b^2/a^2/
(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(
-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b
*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x-1/b*(-a*b)^(1/2)))*c-1/2*b^2/a^2/(-
a*b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*
d-b*c)/b)^(1/2)+1/2*b/a^2*d^(1/2)*ln((-d*(-a*b)^(1/2)/b+(x+1/b*(-a*b)^(1/2))*d)/
d^(1/2)+((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b
*c)/b)^(1/2))-1/2*b/a/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(
-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^
2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1
/2)))*d+1/2*b^2/a^2/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a
*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*
d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2
)))*c

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{d x^{2} + c}}{{\left (b x^{2} + a\right )} x^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(d*x^2 + c)/((b*x^2 + a)*x^4),x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^2 + c)/((b*x^2 + a)*x^4), x)

_______________________________________________________________________________________

Fricas [A]  time = 0.310627, size = 1, normalized size = 0.01 \[ \left [\frac{3 \, b c x^{3} \sqrt{-\frac{b c - a d}{a}} \log \left (\frac{{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \,{\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \,{\left (a^{2} c x -{\left (a b c - 2 \, a^{2} d\right )} x^{3}\right )} \sqrt{d x^{2} + c} \sqrt{-\frac{b c - a d}{a}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) + 4 \,{\left ({\left (3 \, b c - a d\right )} x^{2} - a c\right )} \sqrt{d x^{2} + c}}{12 \, a^{2} c x^{3}}, -\frac{3 \, b c x^{3} \sqrt{\frac{b c - a d}{a}} \arctan \left (-\frac{{\left (b c - 2 \, a d\right )} x^{2} - a c}{2 \, \sqrt{d x^{2} + c} a x \sqrt{\frac{b c - a d}{a}}}\right ) - 2 \,{\left ({\left (3 \, b c - a d\right )} x^{2} - a c\right )} \sqrt{d x^{2} + c}}{6 \, a^{2} c x^{3}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(d*x^2 + c)/((b*x^2 + a)*x^4),x, algorithm="fricas")

[Out]

[1/12*(3*b*c*x^3*sqrt(-(b*c - a*d)/a)*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4
 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 - 4*(a^2*c*x - (a*b*c - 2*a^2*d)*x^3)
*sqrt(d*x^2 + c)*sqrt(-(b*c - a*d)/a))/(b^2*x^4 + 2*a*b*x^2 + a^2)) + 4*((3*b*c
- a*d)*x^2 - a*c)*sqrt(d*x^2 + c))/(a^2*c*x^3), -1/6*(3*b*c*x^3*sqrt((b*c - a*d)
/a)*arctan(-1/2*((b*c - 2*a*d)*x^2 - a*c)/(sqrt(d*x^2 + c)*a*x*sqrt((b*c - a*d)/
a))) - 2*((3*b*c - a*d)*x^2 - a*c)*sqrt(d*x^2 + c))/(a^2*c*x^3)]

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{c + d x^{2}}}{x^{4} \left (a + b x^{2}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((d*x**2+c)**(1/2)/x**4/(b*x**2+a),x)

[Out]

Integral(sqrt(c + d*x**2)/(x**4*(a + b*x**2)), x)

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.734108, size = 290, normalized size = 2.76 \[ -\frac{{\left (b^{2} c \sqrt{d} - a b d^{\frac{3}{2}}\right )} \arctan \left (\frac{{\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{2} b - b c + 2 \, a d}{2 \, \sqrt{a b c d - a^{2} d^{2}}}\right )}{\sqrt{a b c d - a^{2} d^{2}} a^{2}} - \frac{2 \,{\left (3 \,{\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{4} b c \sqrt{d} - 3 \,{\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{4} a d^{\frac{3}{2}} - 6 \,{\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{2} b c^{2} \sqrt{d} + 3 \, b c^{3} \sqrt{d} - a c^{2} d^{\frac{3}{2}}\right )}}{3 \,{\left ({\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{2} - c\right )}^{3} a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(d*x^2 + c)/((b*x^2 + a)*x^4),x, algorithm="giac")

[Out]

-(b^2*c*sqrt(d) - a*b*d^(3/2))*arctan(1/2*((sqrt(d)*x - sqrt(d*x^2 + c))^2*b - b
*c + 2*a*d)/sqrt(a*b*c*d - a^2*d^2))/(sqrt(a*b*c*d - a^2*d^2)*a^2) - 2/3*(3*(sqr
t(d)*x - sqrt(d*x^2 + c))^4*b*c*sqrt(d) - 3*(sqrt(d)*x - sqrt(d*x^2 + c))^4*a*d^
(3/2) - 6*(sqrt(d)*x - sqrt(d*x^2 + c))^2*b*c^2*sqrt(d) + 3*b*c^3*sqrt(d) - a*c^
2*d^(3/2))/(((sqrt(d)*x - sqrt(d*x^2 + c))^2 - c)^3*a^2)